
INTRODUCTION

Large networks of ecological interactions, such as food 
webs, are complex to characterize (Polis 1991, Martinez 
1992, Pascual & Dunne 2006). Empirical descriptions 
require exhaustive observations, while theoretical infer-
ence generally requires ample data to be validated. For 
this reason, studies focusing on communities of inter-
acting species remain understudied, even though we 
acknowledge the importance of considering the reticu-
lated nature of complex networks (Ings et al. 2009, Tyli-
anakis et al. 2008). When time is of the essence, the long 
term studies required quickly become impractical and the 
use of network level approaches relegated to the sideline. 

Alternatively, an approach currently gaining in popu-
larity is to predict interactions using proxies such as func-
tional traits, phylogenies and species distribution data 
(e.g. Morales-Castilla et al. 2015, Bartomeus et al. 2016). 
For example, multiple traits can play a significant role 
in community dynamics and influence the presence and 
intensity of biotic interactions, like the influence of body 
size on predator-prey interactions, a literal take on big 
fish eats small fish (Cohen et al. 2003, Brose et al. 2006, 
Gravel et al. 2013, Séguin et al. 2014). However, the time 
required to gather the necessary data to apply those meth-
ods may still be restrictive, or the data be unavailable 
altogether, so much so that other methods such as impu-

tation techniques applied to phylogenies and traits have 
been developed to fill gaps in knowledge (e.g. Penone et 
al. 2014, Schrodt et al. 2015). 

We therefore wondered whether more readily avail-
able data could be used to infer interactions in data defi-
cient ecosystems. There is an increasing amount of data 
describing worldwide species interactions, some freely 
available through the Global Biotic Interactions (GloBI) 
database (Poelen et al. 2014). Similarly, while detailed 
and calibrated phylogenies can be challenging to construct 
and require ample data, a taxonomical description of spe-
cies is easily accessible through initiatives like the World 
Register of Marine Species (WoRMS; Bailly et al. 2016). 
Evolutionary processes are hypothesized to influence and 
shape consumer-resource interactions through trait match-
ing (Mouquet et al. 2012, Rohr & Bascompte 2014), so 
that taxonomically related species would be more likely 
to share similar types of both consumers and resources 
because they share similar traits (Eklof et al. 2012, Gray 
et al. 2015, Morales-Castilla et al. 2015). Based on that 
hypothesis, taxonomy might be a useful surrogate to pre-
dict interactions when trait data are unavailable. 

The objective of this work is thus to combine empirical 
biotic interactions originating from a variety of ecosys-
tems with taxonomic relatedness to predict interactions 
for data deficient ecosystems. The concept underlying our 
methodology is that instead of constraining ourselves to 
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a specific locality, we would look to other environments 
– outside the box – to glean insights as to the inner work-
ings of an area of interest. As an example, we compare 
the observed interactions in the southern Gulf of St. Law-
rence in Canada (SGSL; Savenkoff et al. 2004) with pre-
dictions made using our approach.

METHODS

The objective of our methodology is to predict the interac-
tions between all pairs of taxa within an arbitrary set n1, using 
a set of taxa n0 with empirically described interactions from 
which we can extract pairs of consumers and resources and their 
taxonomy. We couple the use of empirical data with an unsuper-
vised machine learning method to achieve this.

Biotic interactions catalogue: We built a biotic interaction 
catalogue to serve as a set of taxa n0 with empirically described 
interactions. The empirical data used to construct the interac-
tions catalogue was assembled in two successive steps. The 
first consisted of gathering data from a collection of 94 empiri-
cal food webs from which we extracted pairwise taxa interac-
tions (see Brose et al. 2005, kortsch et al. 2015, university of 
Canberra 2016 for more information). We also used a detailed 
predator-prey interaction database describing trophic relation-
ships between marine fishes and their prey (Barnes et al. 2008). 
From these datasets, only interactions between taxa at the taxo-

nomic scale of the family or higher were selected for inclusion 
in the catalogue. Data used came exclusively from marine and 
coastal ecosystems and encompassed a wide variety of organ-
isms: fungi, algae, parasites, phytoplankton, zooplankton, ben-
thic and pelagic invertebrates, demersal and pelagic fishes, 
marine birds and marine mammals. As empirical food webs are 
vastly dominated (96 % in our datasets) by unobserved or absent 
interactions (“0”, hereafter referred to non-interactions), these 
datasets yielded a highly skewed distribution of interactions 
vs non-interactions. To counterbalance this, the second step of 
data compilation consisted of extracting observed interactions 
from the Global Biotic Interaction (GloBI) database (Poelen et 
al. 2014), which describes binary interactions for a wide range 
of taxa worldwide. We extracted all trophic interactions avail-
able on GloBI for species belonging to the families of taxa 
identified through step 1. Interactions were extracted using the 
rGloBI package in R (Poelen et al. 2015). As per step 1, only 
interactions between taxa at the taxonomic scale of the family or 
higher were retained. The nomenclature used between datasets 
and food webs varied substantially. Taxa names thus had to be 
verified, modified according to the scientific nomenclature and 
validated. This process was performed using the Taxize pack-
age in R (Chamberlain & Szöcs 2013, Chamberlain et al. 2014) 
and manually verified for errors. The same package was used 
to extract the taxonomy of all taxa for which interactions were 
obtained in previous steps. The complete R code and data used 
to build the catalogue is available at https://github.com/david-
beauchesne/Interaction_catalog.

Fig. 1. – Description of logical steps used by the algorithm to suggest a list of candidate resources (cr) for each consumer taxa (tc) in a 
set of n1 for which interactions are predicted, using a set of taxa n0 with empirically described interactions. Interactions between con-
sumer and resource taxa are denoted as I(tc ,tr). k is the number of most similar neighbors selected for the knn algorithm; t stands 
for tanimoto in equation 1; wt is the weight given to sets of resources and consumers in equation 2; the minimum threshold is a value 
setting the minimal similarity value accepted for taxa to be considered as close neighbors in the knn algorithm; the weight is the value 
added to a candidate resource each time it is added to cr; the minimum weight is the minimal weight value accepted for candidate 
resources to be selected as predicted sources in the algorithm.
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unsupervised machine learning: We use the k-nearest 
neighbor (knn) algorithm (Murphy 2012) to predict pairwise 
interactions for a set of taxa n1. The knn algorithm predicts 
missing entries or proposes additional entries by a majority 
vote based on the k nearest (i.e. most similar) entries (see Box 
I for an example). In this case, taxa are described by a set of 
resources when considered as a consumer, a set of consumers 
when considered as a resource, and their taxonomy (i.e. king-
dom, phylum, class, order, family, genus, species). Similarity 
between taxa was evaluated using the Tanimoto similarity mea-
sure, which compares two vectors x and y with n = |x| = |y| ele-
ments, and is defined as the size of the intersection (∩) of two 
sets divided by their union (∪):

tanimoto (x, y) = |x∩y| (1)
 |x∪y|

Adding a weighting scheme, we can measure the similarity 
using two different sets of vectors {x,y} and {u,v}:
tanimotot(x, y, u, v, wt) = wttanimoto(x, y) + (1 – wt)tanimoto(u, v) (2)
where wt is the weight in [0; 1]. For our analyses, the first ele-
ment on the right-hand side of equation 2 is the Tanimoto simi-
larity measured using the taxonomy of two taxa. The second is 
the Tanimoto similarity between the sets of resources (or con-
sumers) of the same taxa. Hence, when wt = 0 only resource or 
consumer sets are used to compute similarity, while wt = 1 solely 
uses taxonomy. This approach to consider the relative contribu-
tion of two sets of vectors to the Tanimoto similarity was devel-
oped by Desjardins-Proulx et al. (2016).

Predicting interactions: The algorithm consists of a series of 
logical steps that ultimately predicts a candidate resources list 
cr for each taxon in n1 based on empirical data available and 
the similarity among consumers and among resources (Fig. 1). 
For all consumer taxa tc in n1, the algorithm first verifies, for 
all resources in resource set tr, if they are found in n0 (Step S1, 
Fig. 1). When it does, all tr taxa that are also in n1 are added as 
predicted resources for tc (Steps S2 and S3). This corresponds 
to what we refer to as the catalogue contribution to resource pre-
dictions. Essentially, two taxa in n1 that are known to interact 
through empirical data in the catalogue are assumed to interact 
in n1.

otherwise, the algorithm passes to what we refer to as the 
predictive contribution to resource predictions (Steps S4 to 
S16), with candidate resources for tci (focal taxon for explana-
tion) identified with the knn algorithm. For each resource in 
tr that was not in n1 (Step S2), k most similar resources tr0 
are identified from n1 (Step S4). If similar resources tr0 have 
a similarity value above a minimal similarity threshold set to 
0.3 in our analysis, they are added to cr as candidate resources. 
If not, they are automatically discarded (Steps S5 to S7). This 
minimal threshold is an arbitrary parameter used to avoid pre-
dicting resources that have very small and insignificant similar-
ity values and hence unlikely to share consumers and resources 
with target taxon. 

Then for all consumer taxa tc in n1, k most similar consum-
ers tc0 are identified from n0. This step aims at extracting sets 
of potential resources tr from similar types of consumers found 

in the catalogue (Step S8). Resources tr are added to candidate 
resources cr for tci if they are also found in n1 (Steps S10 to 
S12). otherwise, Steps S4 to S7 are duplicated to identify poten-
tial similar resources for tci in n1 from the set of resources tr 
of similar consumers tc0 (Steps S13 to S16). A simple working 
example is presented at Box 1. A comprehensive mathematical 
description of the algorithm and the parameters used is available 
through Fig. 1 and the complete R code and data used for the 
algorithm are available at https://github.com/david-beauchesne/
Predict_interactions.

algorithm prediction accuracy: We used datasets including 
more than 50 taxa (Christian & Luczkovich 1999, Link 2002; 
Thompson et al. 2004, Brose et al. 2005, Barnes et al. 2008, 
kortsch et al. 2015) to assess the prediction accuracy of the 
algorithm. For each dataset, we first removed all the interac-
tions it contributed to the interactions catalogue and then used 
the algorithm to predict the structure of interactions among all 
taxa included in the dataset. We then compared the predicted 
and observed networks to evaluate the accuracy of the predic-
tions using four different parameters: a is the number of interac-
tions correctly predicted (i.e. true positives), b is the number of 
non-interactions predicted as interactions (i.e. false positives), 
c is the number of observed interactions predicted as non-inter-
actions (i.e. false negatives) and d is the number of non-interac-
tions correctly predicted (i.e. true negatives). These parameters 
are used in three different statistics:

1. scorey is the fraction of interactions correctly predicted: 

Scorey =
 a (3)

 a + c
2. score–y is the fraction of non-interactions correctly pre-

dicted

Score–y =
 d (4)

 b + d
3. TSS, The True Skilled Statistics is the evaluated prediction 

success by considering both true and false predictions, returning 
a value ranging from 1 (prefect predictions) to –1 (inverted pre-
dictions; Allouche et al. 2006):

TSS = (ad – bc) (5)
 (a + c) (b + d)

These three statistics give a different perspective on predic-
tion accuracy, focusing on true interactions, non-interactions, 
and on both true and false predictions respectively. It is how-
ever important to note that false positives and true negatives are 
solely representative of the datasets used rather than the envi-
ronment itself, as even exhaustively described food webs may 
not fully describe interactions in a given environment. 

For each statistic, we evaluated prediction accuracy 1) for the 
complete algorithm, 2) for predictions made with the predictive 
portion of the algorithm (Steps S4-S16; Fig. 1) and 3) for the 
catalogue contribution of the algorithm (Steps S1-S3; Fig. 1). We 
evaluated these steps separately in order to partition the relative 
contribution of the catalogue and of the predictions made using 
the knn algorithm to the overall predictive accuracy of the algo-
rithm. Multiple wt values were also tested to evaluate whether 
taxa similarity measured as a function of resource/consumer sets 
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or taxonomy contributed more significantly towards increased 
predictive accuracy. The same was done with multiple k values. 

Finally, we evaluated the influence of the comprehensiveness 
of the catalogue on prediction accuracy. We selected the arctic 
marine food web from kortsch et al. (2015) as a test. This food 
web was selected because it is highly detailed taxonomically. 
Furthermore, once its data were removed from the catalogue, 
almost 100 % of its taxa still had information available on sets 
of consumers and resources, which was necessary for testing the 
effect of catalogue comprehensiveness on prediction accuracy. 
We iteratively and randomly (n = 50 randomizations) removed a 
percentage of empirical data describing the food web taxa from 
the catalogue before generating new predictions with the algo-
rithm. We also tested wt values of 0.5 and 1 to evaluate whether 
taxonomic similarity could support predictive accuracy in cases 
when empirical data for species in n1 were unavailable in the 
catalogue.

RESULTS

Biotic interactions catalogue

The data compilation process allowed us to build 
an interactions catalogue composed of 276 708 pair-
wise interactions (interactions = 72 110; non-interac-
tions = 204 598). A total of 9 712 taxa (Superfamily = 15; 
Family = 591; Subfamily = 29; Tribe = 8; Genus = 1 972; 
Species = 7 097) are included in the catalogue, 4 159 of 
which have data as consumers and 4 375 as resources. 

Algorithm predictive accuracy 

The overall predictive accuracy of the algorithm 
ranged between 80 % to almost 100 % in certain cases 
(Fig. 2). Both interactions and non-interactions were well 
predicted by the algorithm. TSS scores were lower than 
scorey and score-y due to misclassified interactions and 
non-interactions. This can also be observed through the 
effect of varying k values, which increased the number 
of potential candidate resources for each taxon in the 
predictive portion of the algorithm. Prediction accuracy 
increased for interactions, while it decreased for non-
interactions, as k values increase. 

Similarity being predominantly measured with 
resource/consumer sets (wt closer to 0) yielded better pre-
dictions than when measured with taxonomy (wt closer 
to 1; Fig. 2). Resource/consumer sets therefore appear 
to serve as a better measure of similarity between taxa. 
note that, although the predictive contribution of the 
algorithm decreases as wt increases, an increased mean 
and decreased variability values for the TSS and sco-
rey statistics is also observed (Fig. 2). This suggests that 
while resource/consumer similarity yielded higher pre-
dictive accuracy, taxonomy better complements the cata-
logue contribution by predicting interactions not captured 

through empirical data, effectively increasing the predic-
tive accuracy of the complete algorithm. 

The partitioning of the catalogue and predictive por-
tions of the algorithm revealed the importance of the com-
prehensiveness of the catalogue in prediction accuracy 
(Figs 2, 3). As the amount of empirical data available in 
the catalogue increased so did the overall accuracy of the 
algorithm (Fig. 3). While prediction accuracy of the pre-
dictive portion of the algorithm was somewhat lower, it 
nonetheless supported high prediction accuracy when the 
catalogue comprehensiveness was lower (Fig. 3). Predic-
tion accuracy still remained around 75 % with only 40 % 
of n1 taxa found in the catalogue (Fig. 3). Furthermore, 
the use of taxonomy for similarity computation was more 
efficient when empirical data was scarcer and no different 
than resource/consumer sets for the complete algorithm 
when ample data was available (Fig. 3).

Southern Gulf of St. Lawrence

As an example, we predicted interactions in the south-
ern Gulf of St. Lawrence (SGSL) in eastern Canada. The 
empirical data and taxa list come from Savenkoff et al. 
(2004). They presented a list of 29 functional groups 
for a total of 80 taxa presented at least at the taxonomi-
cal scale of the family. other coarser functional groups 
were not used for this example (see Table S1 in Supple-
mentary information (SI) and Savenkoff et al. (2004) for 
a complete description of documented groups). We used 
the algorithm to predict interactions between all 80 taxa 
selected. As the interactions are reported for functional 
groups rather than taxa, we then aggregated them back to 
their original functional groups for comparison with inter-
actions presented in Savenkoff et al. (2004). In total, there 
was empirical data available in the catalogue for 78 % of 
SGSL taxa (62/80). The algorithm correctly predicted 
close to 80 % of interactions (a = 135/170) and non-
interactions (d = 354/455) extracted from Savenkoff et al. 
(2004). It also predicted 101 additional interactions that 
were not noted in Savenkoff et al. (2004) (Table S2) and 
failed to predict 36 observed interactions that were (Table 
S3), resulting in a TSS score of 0.57. A visual comparison 
of results obtained from the algorithm with interactions 
noted in Savenkoff et al. (2004) is provided at Fig. 4. The 
network presented is centered on the observed and pre-
dicted interactions of the capelin (mallotus villosus) and 
piscivorous small pelagic feeders (e.g. scomber scombrus 
and illex illecebrosus).

DISCUSSION

Algorithm accuracy

We show that out of the box interaction inference for 
a set of taxa with incomplete or unavailable preexisting 
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Fig. 2. – Representation of the three statistics (i.e. scorey, score−y and TSS) used to evaluate the accuracy of the 
algorithm as a function of k values tested (i.e. 2, 4, 6 and 8 most similar neighbors, top x-axis) and weight for tax-
onomy (bottom x-axis), which varies between 0 and 1. A weight of 0 means that similarity is measured only using 
set of resources/consumers for each taxon, while a weight of 1 means that similarity is based solely on taxonomy. 
For each statistic, the topmost panel presents prediction accuracy for the complete algorithm, the middle panel cor-
responds to predictions made through the predictive portion of the algorithm (Steps S4-S16; Fig. 1) and the bottom 
panel presents the catalogue contribution for the algorithm (Steps S1-S3; Fig. 1). note that the sum of the predic-
tive and catalogue contributions can be over 100 % as there is overlap between predictions made through both. The 
7 datasets used for this analysis contained over 50 taxa (Christian & Luczkovich 1999, Link 2002, Brose et al. 
2005, Thompson et al. 2004, Barnes et al. 2008, kortsch et al. 2015).
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information can be achieved with high accuracy using a 
combination of empirical data describing biotic interac-
tions and taxonomic relatedness. Although the efficiency 
of the algorithm is dependent on the comprehensiveness 
of the interactions catalogue, taxonomic proximity acts as 
a complement to increase predictive capability, especially 
when the catalogue is less comprehensive. 

Taxonomic similarity

We found that taxonomy can be highly useful in com-
plementing predictions made using empirical data. Much 
like the findings from Eklöf & Stouffer (2016), evolution-
ary history serves as an efficient surrogate for traits from 
which inferences on consumer-resource interactions and 
network structure can be made (Mouquet et al. 2012, Rohr 
& Bascompte 2014). It can also capture traits that we are 
unable to measure or use through a comparative approach, 
such as stoichiometric constraints or dietary quality 

requirements. nonetheless, phylogenetic relationships do 
not necessarily capture certain traits that significantly drive 
interactions, in particular when traits are not conserved in 
phylogenies (Losos 2008, Wiens et al. 2010). Comple-
menting our methodology with additional, higher resolu-
tion information such as functional traits (e.g. metabolism 
and body size) and species co-occurrence could thus yield 
even higher predictive efficiency. Similarly, considering 
time calibrated phylogenies rather than taxonomy could 
enhance the resolution at which evolutionary history is 
considered. This could be achieved through recent efforts 
to extensively describe all-encompassing phylogenies 
(e.g. Hedges et al. 2015). Even though our methodology 
was designed for data-poor situations, such data could and 
should be used if available.

Interactions classification

That scorey and score–y are inversely proportional 

Fig. 3. – Representation of scorey 
as a function of catalogue com-
prehensiveness, i.e. the amount 
of information on sets of con-
sumer and resources available in 
the catalogue. The sensitivity of 
the algorithm to data accuracy 
was evaluated with the arctic 
food web from kortsch et al. 
(2015). This food web is highly 
detailed taxonomically. Almost 
100 % of its taxa are documented 
in the interactions catalogue, 
which was necessary to test the 
effect of full range of catalogue 
comprehensiveness on prediction 
accuracy. A random percentage 
of data available in the catalogue 
for taxa in the food web (i.e. 0 to 
100 %) was iteratively removed 
(n = 50 randomizations) before 
generating new predictions with 
the algorithm. wt values of 0.5 
and 1 were evaluated to verify 
the usefulness of taxonomy in 
supporting predictive accuracy. 
The topmost panel presents pre-
diction accuracy for the complete 
algorithm, the middle panel cor-
responds to predictions made 
through the predictive portion of 
the algorithm (Steps S4-S16; Fig. 
1) and the bottom panel presents 
the catalogue contribution for the 
algorithm (Steps S1-S3; Fig. 1). 
note that the sum of the predic-
tive and catalogue contributions 
can be over 100 % as there is 
overlap between predictions 
made through both.
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means that non-interactions are misclassified as interac-
tions in the process of increasing scorey, consequently 
decreasing score–y. This could either stem from the algo-
rithm poorly predicting non-interactions or from the 
empirical data itself. Accuracy evaluation assumes that 
non-interactions from empirical food web are observed 
data, yet it is usually not the case. Most empirical webs 
have a strong focus attributed to higher order consumer 
species and often-uneven effort made to thoroughly detail 
species interactions (Dunne 2006). Furthermore, the 
methodologies used to obtain consumer-resource data, 
often relying on gut content analyses or stable isotopes, 
while efficient at observing interactions, may be ineffi-
cient to detect absence of interactions in natural systems 
(Dunne 2006). This is especially true with our methodol-
ogy, where we predict interactions between species whose 
co-occurrence may have been observed in the other eco-
systems we are using to predict interactions. Misclassified 
interactions could thus be real, albeit unobserved through 
empirical data available.

Southern Gulf of St. Lawrence

The St Lawrence example (Fig. 4 and SI) provides 
adequate material to discuss predictions in greater detail. 
The algorithm failed to predict 20 % of interactions pre-
sented in Savenkoff et al. (2004). Interactions that failed 
to be predicted were mainly centered on invertebrate spe-
cies (e.g. polychaetes and mollusks) and taxonomically 
diverse functional groups described by coarse taxonomic 
categories (e.g. diatoms) alongside few species in Saven-
koff et al. (2004) (e.g. piscivorous small pelagic feeders; 

Table S3). As we focused on the taxa at least at the scale 
of family, it is likely that their functional groups had a 
broader range of possible interactions included than what 
the algorithm could predict using only a few taxa. Fur-
thermore, the efficiency of the algorithm greatly depends 
on the underlying empirical data that defines the cata-
logue. If the empirical data used to build the catalogue 
focuses on higher order consumers, it should come as no 
surprise that the algorithm would be afflicted by the same 
limitations.

on the other hand the algorithm also predicted substan-
tially more interactions than those presented in Savenkoff 
et al. (2004) (Fig. 4; Table S2). For instance, an important 
number of additional consumer interactions were pre-
dicted for small piscivorous pelagic feeders, whereas the 
empirical data suggest that this species group has very few 
preys (Fig. 4). This situation could be explained by onto-
genic shifts in diet that are captured by the wide spectrum 
of interactions covered in the catalogue, such as small pis-
civorous pelagic feeders consuming eggs and/or juvenile 
cod. This exemplifies the point we made in the previous 
section with regards to misclassified interactions being 
real rather than false positives. The resulting TSS score 
for the St. Lawrence analysis is thus greatly diminished by 
classifying additional interactions as false positives and, 
as such, we believe it to be an underestimation of the effi-
ciency of our methodology to predict interactions.

Perspectives

We show that out of the box interactions inference can 
be achieved with high accuracy using readily available 

Fig. 4. – Figure 4: Example of predicted interactions with the network of the southern Gulf of St. Lawrence (Savenkoff et al. 2004) 
centered on the interactions of the capelin (mallotus villosus) and piscivorous small pelagic feeders (e.g. scomber scombrus and illex 
illecebrosus). Edge with colors green (dashed) were both predicted and observed (26), black (solid) were observed only (3) and blue 
(dotted) were predicted only (19). Arrows are pointed towards consumers.
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data, suggesting that ecological networks are characterized 
by a degree of predictability and that this predictive value 
can be recovered through learning (see Tamaddoni-nezhad 
et al. 2013, Gray et al. 2015 for other examples). This adds 
weight to claims that regularities can be observed and pre-
dicted in network structure (Eklöf et al. 2013).

We believe that our methodology offers promising ave-
nues for further applied research and management initia-
tives. The flexibility of our methodology allows it to take 
advantage of multiple types of data. Complementing and 
testing it with additional ecological information such as 
functional traits and phylogenies would therefore be high-
ly valuable. Interaction strength and species co-occurrence 
are additional major attributes affecting the probability of 
observing interactions and the resulting network structure. 
Interaction strength is instrumental to understand commu-
nity dynamics, stability and robustness (Laska & Wootton 
1998, Morales-Castilla et al. 2015), while the co-occur-
rence of species encloses valuable information on inter-
actions and is obviously a pre-requisite for interactions 
to exist (Cazelles et al. 2016). Considering them in our 
methodology would be highly valuable to correctly assess 
interactions in a given ecosystem and predict the spatial 
distribution of interaction networks.

The significance of this approach also extends to other 
areas of ecological research where gathering data can be 
highly difficult, such as the reconstruction of interaction 
networks of palaeocommunities (e.g. Yeakel et al. 2013, 
Yeakel et al. 2014). Predicted networks of taxa known to 
co-occur could be used in hindsight to evaluate the influ-
ence of major events such as biodiversity collapse or 
significant climatic regime shifts on the structure of past 
ecological communities. Another example is in applying 
the methodology to identify knowledge gaps to guide tar-
geted survey efforts, especially for ecosystems that are 
hard to document empirically. As an example, additional 
interactions predicted by the algorithm could be used as 
hypotheses to test through targeted surveys.

ultimately, given its high efficiency and simplicity, 
our methodology could help in promoting the use and the 
accessibility of food webs and network level descriptors 
for integrative management initiatives such as cumulative 
impacts assessments and systematic planning (Giakoumi 
et al. 2015, Beauchesne et al. 2016), especially for remote 
locations and frontier areas where empirical data is hard 
to gather. network characteristics could be efficiently 
evaluated and correlated to levels of multiple environ-
mental stressors to assess the vulnerability of ecosystems 
to global changes (Albouy et al. 2014). We believe that 
the development of such predictive approaches could rep-
resent the first much-needed steps towards the use of eco-
logical networks in systematic impacts assessments.
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BOX 1

The algorithm follows a series of logical steps to pre-
dict resources for all taxa in an arbitrary set of taxa n1 
using a set of taxa n0 with empirically described interac-
tions from which we can extract sets of consumers and 
resources and their taxonomy. In this example, we are pre-
dicting interactions for a fictitious n1 = {t1,t9,t10,t11,t12} 
using n0 with information on 12 taxa. This catalogue 
holds information on consumer or resource for 10 taxa 
and the taxonomy for all 12 taxa in the list.

Similarity between all pairs of taxa in n0 is measured 
for consumer, resource and taxonomic proximity using 
equation 1. The upper triangular matrix represents simi-
larity measured with taxa sets of resources/consumers, 
while the lower triangular represents taxonomic similari-
ties. For consumer/resource set similarities, values of 0 
mean that similarity equals 0 for both similarity measure-
ments.

From these, the algorithm goes through logical steps 
(Fig. 1) to identify a candidate resource list cr for each 
taxon in n1 using either empirical data directly or k most 
similar taxa with equation 2. Going through the process 
for t1, using k = 1 and wt = 1:

The logical steps allow us to predict a set of resources 
for t1 = {t9,t10,t12}. Doing it for all taxa in n1 with wt = 0 
and 1 predicts the following networks:

N0 taxa ID Taxonomy Resource Consumer

T1 {a,b,c} {T2,T3,T12} {T4}

T2 {e,f,g} {T1,T5,T6}

T3 {i,j,k} {T1}

T4 {m,n,o} {T1,T5}

T5 {a,b,d} {T2,T8,T9} {T4}

T6 {i,q,r} {T2,T7,T8}

T7 {e,f,h} {T1,T6}

T8 {s,t,u} {T5,T6}

T9 {s,t,v} {T5}

T10 {i,j,l}

T11 {m,n,p}

T12 {q,r,s} {T1}

tanimoto(TCx; TCy) / tanimoto(TRx; TRy)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

T1 - 0 0 0 0.2/1 0 0 0 0 0 0 0

T2 0 - 0/0.5 0 0 0 0/0.3 0/0.3 0/0.5 0 0 0/0.5

T3 0 0 - 0 0 0 0/0.5 0 0 0 0 1

T4 0 0 0 - 0 0 0 0 0 0 0 0

T5 0.5 0 0 0 - 0.25/0 0 0 0 0 0 0

T6 0 0 0.2 0 0 - 0 0 0 0 0 0

T7 0 0.5 0 0 0 0 - 0/0.3 0 0 0 0/0.5

T8 0 0 0 0 0 0 - 0/0.5 0 0 0

T9 0 0 0 0 0 0 0 0.5 - 0 0 0

T10 0 0 0.5 0 0 0.2 0 0 0 - 0 0

T11 0 0 0 0.5 0 0 0 0 0 0 - 0

T12 0 0 0 0 0 0.5 0 0.2 0.2 0 0 -

tanimoto(TTx; TTy)

Steps  Catalogue Prediction

1 I(T1; TR) in N0?

2 TR in N1?

4-7 T2 = no t(T2,TR’,wt) = NA {} {}

4-7 T3 = no = t(T3,TR’,wt) = T10 = 0.5 {} {T10}

3 T12 = yes {T12} {T10}

8 t(T1,TC’,wt) = T5 = 0.5

9 I(T5,TR) in N1?

13-16 T2 = no = t(T2,TR’,wt) = NA {T12} {T10}

13-16 T8 = no = t(T8,TR’,wt) = T9 = 0.5 {T12} {T9,T10}

10-12 T9 = yes {T9,T12} {T9,T10}


