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The grand ambition of theorists studying ecology and evolution is to discover the logical

and mathematical rules driving the world’s biodiversity at every level from genetic diversity

within species to differences between populations, communities, and ecosystems.

This ambition has been difficult to realize in great part because of the complexity

of biodiversity. Theoretical work has led to a complex web of theories, each having

non-obvious consequences for other theories. Case in point, the recent realization

that genetic diversity involves a great deal of temporal and spatial stochasticity forces

theoretical population genetics to consider abiotic and biotic factors generally reserved to

ecosystem ecology. This interconnectedness may require theoretical scientists to adopt

new techniques adapted to reason about large sets of theories. Mathematicians have

solved this problem by using formal languages based on logic to manage theorems.

However, theories in ecology and evolution are not mathematical theorems, they

involve uncertainty. Recent work in Artificial Intelligence in bridging logic and probability

theory offers the opportunity to build rich knowledge bases that combine logic’s ability

to represent complex mathematical ideas with probability theory’s ability to model

uncertainty. We describe these hybrid languages and explore how they could be used to

build a unified knowledge base of theories for ecology and evolution.

Keywords: artificial intelligence, theoretical biology, theoretical ecology, evolution, theoretical population

genetics, machine learning, knowledge representation

1. INTRODUCTION

Almost four decades ago, Ralph W. Lewis argued for the formalization of evolutionary theory and
the recognition of evolution as a system of theories. In his words, “when theories are partially
formalized [...] the intra- and interworkings of theories become more clearly visible, and the
total structure of the discipline becomes more evident” (Lewis, 1980). Supporting Lewis’ point,
Queller recently showed how Fisher’s fundamental theorem of natural selection, Price’s theorem,
the Breeder equation of quantitative genetics, and other key formulas in ecology and evolution were
related (Queller, 2017). In the same vein, Rice formulated an axiomatic theory of evolution based
on a stochastic version of Price’s theorem (Rice and Papadopoulos, 2009). These projects fall under
the scope of automated theorem proving, one of the oldest and most mature branches of Artificial
Intelligence (Harrison, 2009a). Theories can be written in some formal language, such as first-order
logic or type theory, and then algorithms are used to ensure the theories can be derived from a
knowledge base of axioms and existing results. In the last few decades, mathematicians have built
knowledge bases with millions of helper theorems to assist the discovery of new ideas (Kaliszyk and
Urban, 2015). For example, theMizarMathematical Library is a growing library of theorems, which
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are added after new candidate theorems are approved by the
proof checker and peer-reviewed for style. Such libraries help
mathematicians juggle with a growing body of knowledge and
offers a concrete answer to the issue of knowledge synthesis.
Mizar uses a language powerful enough for the formalization
of evolutionary theories envisioned by Lewis and the result of
Queller on Price’s theorem and its relationship to other theories.
It is also expressive enough to build a knowledge base out of
Rice’s axiomatic theory of evolution. Doing so would force us to
think more clearly about the theoretical structure of evolution,
with theoretical ecology facing a similar state of disorganization
(Lewis, 1980). Case in point: theoretical community ecologists
have been criticized for focusing on a single prediction for
theories capable of making several (McGill et al., 2007). An
example of this is Hubbell’s neutral theory of biodiversity
(Hubbell, 2001), which uses an unrealistic point-mutation model
that does not fit with our knowledge of speciation, leading
to odd predictions (Etienne and Haegeman, 2011; Desjardins-
Proulx and Gravel, 2012a,b). In logic-based (also called symbolic)
systems like Mizar, all formulas involving speciation would be
implicitly linked together. Storing ecological theories in such
knowledge base would automatically prevent inconsistencies and
highlight the consequences of theories.

Despite the importance of formalization, it remains somewhat
divorced from an essential aspect of theories in ecology and
evolution: their probabilistic and fuzzy nature. As a few examples:
a surprisingly common idea found in ecological theories is that
predators are generally larger than their prey, a key assumption of
the food web model of Williams and Martinez (2000); deviations
from the Hardy-Weinberg principle are not only common but
tend to give important information on selective pressures; and
nobody expects the Rosenzweig-MacArthur predator-preymodel
to be exactly right. In short, important ideas in ecology and
evolution do not fit the true/false epistemological framework of
systems like Mizar, and ideas do not need to be derived from
axiomatic principles to be useful. We are often less concerned
by whether a formula can be derived from axioms than in how
it fits a particular dataset. In the 1980s, Artificial Intelligence
experts developed probabilistic graphical models to handle large
probabilistic systems (Pearl, 1988). While probabilistic graphical
models are capable of answering probabilistic queries for large
systems of variables, they cannot represent or reason with
sophisticated mathematical formulas. Alone, neither logic nor
probability theory is enough to elucidate the structure of theories
in ecology and evolution.

For decades, researchers have tried to unify probability theory
with rich logics to build knowledge bases both capable of
the sophisticated mathematical reasoning found in automated
theorem provers and the probabilistic reasoning of graphical
models. Recent advances moved us closer to that goal
(Richardson and Domingos, 2006; Getoor et al., 2007; Wang and
Domingos, 2008; Nath and Domingos, 2015; Hu et al., 2016;
Staton et al., 2016; Bach et al., 2017). Using these systems, it
is possible to check if a mathematical formula can be derived
from existing results and also possible to ask probabilistic
queries about theories and data. The probabilistic nature of
these representations is a good fit to learn complex logical and

mathematical formulas from data (Kok and Domingos, 2009).
Within this framework, there is no longer a sharp distinction
between theory and data, since the knowledge base defines
a probability distribution over all objects, including logical
relationships and mathematical formulas.

For this article, we introduce key ideas on methods at the
frontier of logic and probability, beginning with a short survey
of knowledge representations based on logic and probability.
First-order logic is described, along with how it can be used in
a probabilistic setting with Markov logic networks (Richardson
and Domingos, 2006). We detail how theories in ecology and
evolution can be represented with Markov logic networks, as
well as highlighting some limitations. We present a case study
involving a tritrophic system to demonstrate the strengths and
weaknesses of Markov logic networks. Synthesis in ecology
and evolution has been made difficult by the sheer number
of theories involved and their complex relationships (Poisot
et al., 2018). Practical representations to unify logic and
probability are relatively new, but we argue they could be used
to achieve greater synthesis by allowing the construction of
large, flexible knowledge bases with a mix of mathematical and
scientific knowledge.

2. KNOWLEDGE REPRESENTATIONS

Traditional scientific theories and models are mathematical, or
logic-based. Einstein’s e = mc2 established a relationship between
energy e, mass m, and the speed of light c. This mathematical
knowledge can be reused: in any equation with energy, we could
replace e with mc2. This ability of mathematical theories to
establish precise relationships between concepts, which can then
be used as foundations for other theories, is fundamental to how
science grows and forms an interconnected corpus of knowledge.
The formula is implicitly connected to other formulas involving
the same symbol, such that if we were to establish a different
but equivalent way to represent the speed of light c, it could
automatically substitute c in e = mc2.

Artificial Intelligence researchers have long been interested in
expert systems capable of scientific discoveries, or simply capable
of storing scientific and medical knowledge in a single coherent
system. Dendral, arguably the first expert system, could form
hypotheses to help identify new molecules using its knowledge
of chemistry (Lindsay et al., 1993). In the 1980s, Mycin was used
to diagnose blood infections (and did so more accurately than
professionals) (Buchanan and Shortliffe, 1984). Both systems
were based on logic, with Mycin adding a “confidence factor”
to its rules to model uncertainty. These expert systems generally
relied on a simple logic system not powerful enough to handle
uncertainty. With few exceptions, the rules were hand-crafted by
human experts. After the experts established the logic formulas,
the systems acted as static knowledge bases and unable to
discover new rules. Algorithms have been developed to learn new
logic rules from data (Muggleton and Feng, 1990; Muggleton
and de Raedt, 1994), but the non-probabilistic nature of the
resulting knowledge base makes it difficult to handle real-world
uncertainty. In addition to expert systems, logic systems are
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used to store mathematical knowledge and perform automatic
theorem proving (Harrison, 2009a). Pure logic has rarely been
used in ecology and evolution, but recent studies have shown its
ability to reconstruct food webs from data (Bohan et al., 2011;
Tamaddoni-Nezhad et al., 2013).

There are many different logics for expert systems and
automatic theorem proving (Harrison, 2009a; Program, 2013;
Nederpelt and Geuvers, 2014). We will focus on first-order
logic, the most commonly used logic in efforts to unify logic
with probability. A major reason for adopting rich logics,
whether first-order or higher-order, is to allow for the complex
relationships found in ecology and evolution to be expressed in
concise formulas. Stuart Russell noted that “the rules of chess
occupy 100 pages in first-order logic, 105 pages in propositional
logic, and 1038 pages in the language of finite automata” (Russell,
2015). Similarly, first-order logic allows us to directly express
complex ecological ideas in a simple but formal language.

In mathematics, a function f maps terms X (its domain)
to other terms Y (its codomain) f :X → Y. The number of
arguments of a function, |X|, is called its arity. The atomic
element of first-order logic is the predicate: a function that maps
0 or more terms to a truth value: false or true. In first-order logic,
terms are either variables, constants, or functions. A variable

ranges over a domain, for example x could range over integers,
p over a set of species, and city over a set of cities. Constants
represent values such as 42, Manila, π . Lastly, functions map
terms to other terms such as multiplication, integration, sin,
CapitalOf (mapping a country to its capital). Variables have to
be quantified either universally with ∀ (forall), existentially with
∃ (exists), or uniquely with ∃!. ∀x : p(x) means p(x) must hold
true for all possible values of x. ∃x : p(x) means it must hold for at
least one value of x while ∃!x : p(x) means it must hold for exactly
one value of x. Using this formal notation, we can write the
relationship between the basal metabolic rate (BMR) and body
mass (Mass) for mammals (Ahlborn, 2004):

∀m ∈ Mammal :BMR(m) = 4.1×Mass(m)0.75. (1)

This formula has one variable m which is universally quantified:
∀m ∈ Mammal reads “for all m in the set Mammal.” It has two
constants: the numbers 4.1 and 0.75, along with four functions
(BMR,Mass, multiplication, exponentiation). The equal sign= is
the sole predicate.

A first-order logic formula is either a lone predicate or a
complex formula formed by linking formulas using the unary
connective ¬ (negation) or binary connectives (and ∧, or ∨,
implication ⇒, see Table 1). For example, PreyOn(sx, sy) is
a predicate that maps two species to a truth value, in this
case whether the first species preys on the second species, and
IsParasite(s) is a predicate that is true if species s is a parasite.
We could also have a function Mass(sx) mapping a species to its
body mass. We can build more complex formulas from there,
for example:

∀sx :¬PreyOn(sx, sx). (2a)

∀sx, sy : PreyOn(sx, sy) ⇒ Mass(sx) > Mass(sy). (2b)

∀sx, sy : PreyOn(sx, sy) ∧ ¬IsParasite(sx) ⇒ Mass(sx) > Mass(sy).
(2c)

The first formula says that species don’t prey on themselves.
The second formula says that predators are larger than their
prey (> is a shorthand for the greater than predicate). The third
formula refines the second one by adding that predators are
larger than their prey unless the predator is a parasite. None
of these rules are expected to be true all the time, which is
where mixing probability with logic will come in handy. The
Rosenzweig-MacArthur equation can also easily be expressed
with first-order logic:

∀x, y : ẋ = r0

(

1−
x

K

)

−
Cxy

D+ x
∧ ẏ = X

Cxy

D+ x
− δ0y. (3)

This formula has four functions: the time differential ẋ ≡ dx/dt,
multiplication, addition, and subtraction. Prey x and predator
y are universally quantified variables while r0,K,C,D,X, δ0 are
constants. The formula has only one predicate, =, and both
sides of the formula are connected by ∧, the symbol for
conjunction (“and”).

A knowledge base K in first-order logic is a set of formulas
K = {f0, f1, ..., |f|K|−1}. First-order logic is expressive enough
to represent and manipulate complex logic and mathematical
ideas. It can be used for simple ideas such that predators are
generally larger than their prey (Equation 2b), mathematical
formulas for predator-prey systems equation (Equation 3),
and also to establish the logical relationship between various
predicates. We may want a PreyOn predicate to tell us whether
sx preys on sy, but also a narrower PreyOnAt(sx, sy, l) predicate
to model whether sx preys on sy at a specific location l.
In this case, it would be a good idea to have the formula
∀sx, sy, l : PreyOnAt(sx, sy, l) ⇒ PreyOn(sx, sy). Given this formula
and the data point PreyOnAt(Wolverine,Rabbit,Quebec), we
do not need PreyOn(Wolverine,Rabbit) to be explicitly stated,
ensuring the larger metaweb (Poisot et al., 2016) is always
consistent with information from local food webs.

An interpretation defines which object, predicate, or function
is represented by which symbol, e.g., it says PreyOnAt is a
predicate with three arguments, two species and one location.
The process of replacing variables with constants is called
grounding, and we talk of ground terms / predicates /
formulas when no variables are present. Together with an
interpretation, a possible world assigns truth values to each
possible ground predicate, which can then be used to assign
truth values to a knowledge base’s formulas. PreyOn(sx, sy)
can be neither true nor false until we assign constants to
the variables sx and sy. Constants are typed, so a set of
constants C may include two species {Gulo gulo,Orcinus orca}
and three locations {Quebec, Fukuoka,Arrakis}. The constants C
yield 22 × 3 possible ground predicates for PreyOnAt(sx, sy, l):

PreyOnAt(Gulo gulo,Gulo gulo,Quebec)

PreyOnAt(Gulo gulo,Orcinus orca,Quebec)

PreyOnAt(Orcinus orca,Orcinus orca,Quebec)

PreyOnAt(Orcinus orca,Gulo gulo,Quebec)
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PreyOnAt(Gulo gulo,Gulo gulo, Fukuoka)

. . .

and only two possible ground predicates for IsParasite:

IsParasite(Gulo gulo)

IsParasite(Orcinus orca)

We say a possible world satisfies a knowledge base (or a single
formula) if all the formulas are true given the ground predicates.
A basic question in first-order logic is to determine whether a
knowledge base K entails a formula f , or K |H f . Formally, the
entailment K |H f means that for all possible worlds in which all
formulas in K are true, f is also true. More intuitively, it can be
read as the formula following from the knowledge base (Russell
and Norvig, 2009). A proof in first-order logic can be derived
using inference rules such asModus Ponens:

α ⇒ β α

β
. (6)

This notation reads: infer β if α ⇒ β is true and α is true.
See Harrison (2009a) for a detailed look at inference rules in
first-order logic.

Probabilistic graphical models, which combine graph theory
with probability theory to represent complex probability
distributions, can provide an alternative to logic-based
representations (Koller and Friedman, 2009; Barber, 2012).
There are primarily two motivations behind probabilistic
graphical models. First, even for binary random variables, we
need to learn 2n − 1 parameters for a distribution of n variables.
This is unmanageable on many levels: it is computationally
difficult to do inference with so many parameters, requires
a large amount of memory, and makes it difficult to learn
parameters without an unreasonable volume of data (Koller and
Friedman, 2009). Second, probabilistic graphical models provide
important information about independences and the overall
structure of the distribution. Probabilistic graphical models were
also used as expert systems: Munin had a network of more than
1,000 nodes to analyze electromyographic data (Andreassen
et al., 1996), while PathFinder assisted medical professionals
for the diagnostic of lymph-node pathologies (Heckerman and
Nathwani, 1992) (Figure 1).

The two key inference problems in probabilistic machine
learning are finding the most probable joint state of the
unobserved variables (maximum a posteriori, or MAP) and
computing conditional probabilities (conditional inference). In a
simple presence/absence model for 10 species (s0, s1, ..., s9), given
that we know the state of species s0 = Present, s1 = Absent, s2 =
Absent, MAP inference would tell us the most likely state for
species s3, ..., s9, while conditional inference could answer queries
such as P(s4 = Absent|s0 = Present).

3. MARKOV LOGIC

At this point we have first-order logic, which is capable of
manipulating complex logic and mathematical formulas but

TABLE 1 | Common binary connectives.

Truth table

Name Common Symbol T × T T × F F × T F × F

Conjunction and ∧ T F F F

Disjunction or ∨ T T T F

Implication implies ⇒ T F T T

Material equivalence iff ⇔ T F F T

Exclusive disjunction xor ⊻ F T T F

The table shows the resulting truth value (T: True, F: False) for all possible combinations.

iff is read if and only if. Implication is one of the most common connective and may have

surprising behavior. In particular, it will always return true when the left-side is false. While

this may seem odd, it allows us to make statements such as ∀x ∈ R : x ≥ 0 ⇒
√
x2 = x.

This formula holds for all real numbers, including negative ones, since with x = −1, x ≥ 0

is false and F ⇒ F returns true.

cannot handle uncertainty, and probabilistic graphical models,
which cannot be used to represent mathematical formulas
(and thus theories in ecology and evolution) but can handle
uncertainty. The limit of first-order logic can be illustrated with
our previous example: predators generally have a larger body
weight (Mass) than their prey, which we expressed in predicate
logic as ∀sx, sy : PreyOn(sx, sy) ⇒ Mass(sx) > Mass(sy), but this is
obviously false for some assignments such as sx : grey wolf and
sy :moose. However, it is still useful knowledge that underpins
many ecological theories (Williams and Martinez, 2000). When
our domain involves a great number of variables, we should
expect useful rules and formulas that are not always true.

A core idea behind many efforts to unify rich logics with
probability theory is that formulas can be weighted, with higher
values meaning we have greater certainty in the formula. In pure
logic, it is impossible to violate a single formula. With weighted
formulas, an assignment of concrete values to variables is only
less likely if it violates formulas, and how much less likely will
depend on the weight assigned to the violated formula. The
higher the weight of the formula violated, the less likely the
assignment is. It is conjectured that all perfect numbers are even
(∀x : Perfect(x) ⇒ Even(x)), thus, if we were to find a single odd
perfect number, that formula would be refuted. It makes sense for
mathematics but for many disciplines, such as biology, important
principles are only expected to be truemost of the time. If we were
to find a single predator smaller than its prey, it would definitely
not make our rule useless.

The idea of weighted formulas is not new. Markov logic
networks (or justMarkov logic), invented a decade ago, allows for
logic formulas to be weighted (Richardson and Domingos, 2006;
Domingos and Lowd, 2009). Similar efforts also use weighted
formulas (Hu et al., 2016; Bach et al., 2017). Markov logic
supports algorithms to add weights to existing formulas given a
dataset, learn new formulas or revise existing ones, and answer
probabilistic queries (MAP or conditional). As a case study,
Yoshikawa et al. used Markov logic to understand how events
in a document were time-related (Yoshikawa et al., 2009). Their
research is a good case study of interaction between traditional
theory-making and artificial intelligence. The formulas they used
as a starting point were well-established logic rules to understand
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FIGURE 1 | A Bayesian network with four binary variables (the vertices) and possible conditional probability tables. Bayesian networks encode the distribution as

directed acyclic graphs such that P(X = x) =
∏

i P(xi |Pa(xi )), where Pa(xi ) is the set of parents of variable xi . Because no cycles are allowed, the variables form an

ordering so the set Pa(xi ) can only involve variables already seen on the left of xi . Thus, P(a)P(b|a)P(c) is a valid Bayesian networks but not P(a)P(b|c)P(c|b). The four

vertices represented here were extracted from PathFinder, a Bayesian network with more than 1,000 vertices used to help diagnose blood infections (Heckerman and

Nathwani, 1992). The vertices represent four variables related to blood cells and are denoted by a single character (in bold in the figure): C,M, L,G. We denote a

positive value with a lowercase letter and a negative value with ¬ (e.g.,: C = c, M = ¬m). Since P(¬x|y) = 1− P(x|y), we need only 2|Pa(x)| parameters per vertex, with

|Pa(x)| being the number of parents of vertex x. The structure of Bayesian networks highlights the conditional independence assumptions of the distribution and

reduces the number of parameters for learning and inference. As a example query: P(l,¬c,m,¬g) = P(l)P(¬c)P(m|¬c)P(¬g|l,¬c,m) = 0.81× (1− 0.65)× 0.27

× (1− 0.42) = 0.044. See Darwiche (2009) for a detailed treatment of Bayesian networks and Koller and Friedman (2009) for a more general reference on

probabilistic graphical models.

temporal expressions. From there, they used Markov logic to
weight the rules, adding enough flexibility to their system to
beat the best approach of the time. Brouard et al. (2013) used
Markov logic to understand gene regulatory networks, noting
how the resulting model provided clear insights, in contrast
to more traditional machine learning techniques. Markov logic
greatly simplifies the process of growing a base of knowledge: two
research labs with different knowledge bases can simply put all
their formulas in a single knowledge base. The only steps required
tomerge two knowledge bases is to put all the formulas in a single
knowledge base and reevaluate the weights.

In a nutshell, a knowledge base in Markov logic M is a set of
formulas f0, f1, f2, ... along with their weights w0,w1,w2, . . . :

M = {(f0,w0), (f1,w1), ..., (f|M|−1,w|M|−1)}. (7)

Given constants C = {c0, c1, . . . , c|C|−1}, M defines a Markov
network (an undirected probabilistic graphical model) which
can be used to answer probabilistic queries. Weights are real
numbers in the −∞, ∞ range. The intuition is: the higher the
weight associated with a formula, the greater the penalty for
violating it (or alternatively: the less likely a possible world is).
The cost of an assignment is the sum of the weights of the
unsatisfied formulas (those that are false). The higher the cost,
the less likely the assignment is. Thus, if a variable assignment
violates 12 times a formula with a weight of 0.1 and once a

formula with a weight of 1.1, while another variable assignment
violates a single formula with a weight of 5, the first assignment
has a higher likelihood (cost of 2.3 vs. 5). Formulas with an
infinite weight act like formulas in pure logic: they cannot
be violated without setting the probabilities to 0. In short, a
knowledge base in pure first-order logic is exactly the same as
a knowledge base in Markov logic where all the weights are
infinite. In practice, it means mathematical ideas and axioms
can easily be added to Markov logic as formulas with an infinite
weight. Formulas with weights close to 0 have little effect on
the probabilities and the cost of violating them is small. A
formula with a negative weight is expected to be false. It is
often assumed that all weights are positive real numbers without
loss of generality since (f ,−w) ≡ (¬f ,w). See Jain (2011) for
a detailed treatment of knowledge engineering with Markov
logic. Markov logic can answer queries of complex formulas
of the form:

P(f0|f1,M, C) =
P(f0 ∧ f1|M, C)

P(f1|M, C)
, (8)

where f0 and f1 are first-order logic formulas while M is a
weighted knowledge base and C a set of constants. It’s important
to note that neither f0 nor f1 need to be inM. Logical entailment
M |H f is equivalent to finding P(f |M) = 1 (Domingos and
Lowd, 2009).
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We build a small knowledge base for an established ecological
theory: the niche model of trophic interactions (Williams and
Martinez, 2000). The first iteration of the niche model posits that
all species are described by a niche positionN (their body size for
instance) in the [0, 1] interval, a diet D in the [0,N] interval, and
a range R such that a species preys on all species with a niche in
the [D − R/2,D + R/2] interval. We can represent these ideas
with three formulas:

∀x, y :¬PreyOn(x, y), (9a)

∀x :D(x) < N(x), (9b)

∀x, y : PreyOn(x, y) ⇔ D(x)− R(x)/2 < N(y) ∧ N(y) < D(x)

+R(x)/2, (9c)

As pure logic, this knowledge base makes little sense. Formula 9a
is obviously not true all the time but often is since most pairs of
species do not interact. In Markov logic, it is common to have
a formula for each lone predicate, painting a rough picture of
its marginal probability (Domingos and Lowd, 2009; Jain, 2011).
We could also add that cannibalism is rare ∀x :¬PreyOn(x, x)
and that predator-prey relationships are generally asymmetrical
∀x, y : PreyOn(x, y) ⇒ ¬PreyOn(y, x) (although this formula
is redundant with the idea that predators are generally larger
than their prey). Formulas that are often wrong are assigned a
lower weight but can still provide useful information about the
system. The second formula says that the diet is smaller than
the niche value. The last formula is the niche model: species
x preys on y if and only if species y’s niche is within the diet
interval of x. Using Markov logic and a dataset, we can learn a
weight for each formula in the knowledge base. This step alone
is useful and provides insights into which formulas hold best in
the data. With the resulting weighted knowledge base, we can
make probabilistic queries and even attempt to revise the theory
automatically. We could find, for example, that the second rule
does not apply to parasites or some group and get a revised rule
such as ∀x :¬IsParasite(x) ⇒ D(x) < N(x).

4. FUZZINESS

First-order logic provides a formal language for expressing
mathematical and logical ideas while probability theory provides
a framework for reasoning about uncertainty. A third dimension
often found in discussions on unifying logic with probability is
fuzziness. A struggle with applying logic to ecology is that all
predicates are either true or false. Even probabilistic logics like
Markov logic define a distribution over binary predicates. Going
back to Rosenzweig-MacArthur (Equation 3), this formula’s
weight in Markov logic is almost certainly going to be zero since
it’s never exactly right. If the Rosenzweig-MacArthur equation
predicts a population size of 94 and we observe 93, the formula is
false. Weighted formulas help us understand how often a formula
is true, but in the end the formula has to give a binary truth value:
true or false, there is no place for nuance. Logicians studied more
flexible logics where truth is a real number in the [0, 1] range.
These logics are said to be “infinitely many-valued” or “fuzzy.” In

TABLE 2 | Definitions of logic connectives for the three main fuzzy logics.

Logic

Connective Lukasiewicz Gödel-Dummett Product

x ∧ y max(0, x + y − 1) min(x, y) x × y

x ∨ y min(1, x + y) max(x, y) x + y − x × y

x ⇒ y min(1, 1− x + y) 1 if x ≤ y, y otherwise 1 if x ≤ y, y/x otherwise

¬x 1− x 0 if x > 0, 1 otherwise 0 if x > 0, 1 otherwise

These three logics are said to be normal, meaning they behave exactly like classical logic

when restricted to truth values of 0 (false) and 1 (true). When truth values are between 0

and 1, these logics will often behave differently than classical logic. For example, in both

classical and Lukasiewicz logics, ¬¬x ≡ x, but it is not the case for Gödel-Dummett and

Product logics (unless x ∈ {0, 1}). Another example is that conjunction and disjunction are
idempotent in classical and Gödel-Dummett logics, meaning x ∧ x ≡ x and x ∨ x ≡ x,

but it is not the case for Lukasiewicz and Product logics. See Behounek et al. (2011) for

a detailed explanation of how the connectives are defined.

this setting: 0 is false, 1 is true, and everything in-between is used
to denote nuances of truth (Zadeh, 1965; Behounek et al., 2011).
Predicates returning truth values in the [0, 1] range are called
fuzzy predicates, while standard predicates returning false, true
are said to be bivalent. To show fuzziness in action, let’s look
at a simple formula that says that small populations experience
exponential growth:

∀s, l, t : SmallPopSize(s, l, t) ⇒ N(s, l, t + 1) = R(s)× N(s, l, t).
(10)

Variables s, l, t, respectively, denote a species, a location, and
time. Function N returns the population size of a species at a
specific location and time while function R returns the growth
rate of the species. The predicates SmallPopSize and = are both
problematic from a bivalent perspective. Equality poses problem
for the same reason it did with the Rosenzweig-MacArthur
example: we do not expect this formula to be exactly right. The
notion of a small population size should also be flexible, yet
logic forces us to determine a strict threshold where SmallPopSize
will change from true to false. Using truth values in the [0, 1]
range makes it possible to have a wide range of nuances for both
SmallPopSize and equality. SeeTable 2 for the definitions of fuzzy
logic connectives.

Fuzzy logic is not a replacement for probability theory.
The most interesting aspect of fuzzy logic is how it interacts
with probability theory to form truly flexible languages. For
examples, fuzzy predicates are used in both probabilistic soft
logic (Kimmig et al., 2012; Bach et al., 2017) and deep learning
approaches to predicate logic (Hu et al., 2016; Zahavy et al., 2016).
Hybrid Markov logic (Wang and Domingos, 2008; Domingos
and Lowd, 2009) extends Markov logic by allowing not only
weighted formulas but terms like soft equality, which applies
a Gaussian penalty to deviations from equality. While not
exactly a full integration of fuzzy logic into Markov logic, soft
equality behaves in a similar matter and is a good fit for
formulas like the Rosenzweig-MacArthur system or our previous
example with exponential growth. Hybrid Markov logic is not
as well-developed as standard Markov logic, for example there
are no algorithms to learn new formulas from data. On the
other hand, Hybrid Markov logic solves many of the problems
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FIGURE 2 | Various languages and their ability to model uncertainty, vagueness, and mathematics (the size of the rectangles has no meaning). In the blue rectangle:

languages capable of handling uncertainty. Probabilistic graphical models combine probability theory with graph theory to represent complex distributions (Koller and

Friedman, 2009). Alternatives to probability theory for reasoning about uncertainty include possibility theory and Dempster-Shafer belief functions, see Halpern (2003)

for an extended discussion. In the green rectangle: Fuzzy logic extends standard logic by allowing truth values to be anywhere in the [0, 1] interval. Fuzziness models

vagueness and is particularly popular in linguistics, engineering, and bioinformatics, where complex concepts and measures tend to be vague by nature. See Kosko

(1990) for a detailed comparison of probability and fuzziness. In the purple rectangle: languages capable of modeling mathematical formulas. It is important to note

that while first-order logic is expressive enough to express a large class of mathematical ideas, many languages rely on a restricted from of first-order logic without

functions. Alone, these languages are not powerful enough to express scientific ideas, we must thus focus on what lies at their intersection. Type-2 Fuzzy Logic is a

fast-expanding (Sadeghian et al., 2014; Mendel, 2017) extension to fuzzy logic, which, in a nutshell, models uncertainty by considering the truth value itself to be fuzzy

(Mendel and Bob John, 2002; Zeng and Liu, 2008). Markov logic networks (Richardson and Domingos, 2006; Domingos and Lowd, 2009) extends predicate logic with

weights to unify probability theory with logic. Probabilistic soft logic (Kimmig et al., 2012; Bach et al., 2015) also has formulas with weights, but allows the predicates

to be fuzzy, i.e., have truth values in the [0, 1] interval. Some recent deep learning studies also combine all three aspects (Garnelo et al., 2016; Hu et al., 2016).

caused by bivalent predicates while retaining the ability to
answer conditional queries. In the next section we’ll explore
hybrid Markov logic and its application to an ecological dataset.
Several languages for reasoning have combined fuzziness with
probability or logic (Figure 2). It has been argued that, in the
context of Bayesian reasoning, fuzziness plays an important role
in bridging logic with probability (Jacobs and Zanasi, 2018;
Nedbal and Serafini, 2018). However, how to effectively combine
rich logics with probability theory remains an open question, as
is the role of fuzziness.

5. MARKOV LOGIC AND THE SALIX
TRITROPHIC SYSTEM

The primary goal of unifying logic and probability is to be
able to grow knowledge bases of formulas in a clear, precise
language. For Markov logic, it means a set of formulas in first-
order logic. For this example, we used Markov logic to build
a knowledge base for ecological interactions around the Salix
dataset (Kopelke et al., 2017). The Salix dataset has 126 parasites,
96 species of gallers (insects), and 52 species of salix, forming
a tritrophic ecological network (Parasite → Galler → Salix).
Furthermore, we have partial phylogenetic information for the

TABLE 3 | A sample of three tables for the Salix dataset (Kopelke et al., 2017).

PreyOnAt IsParasitoid HighTemperature

Amorri Ovesic Site060 Ppecti Site006

Chalci Halien Site116 Psoemi Site311

Ireuni Hpolit Site291 Tspone Site296

Eacicu Ovimin Site121 Tsptwo Site183

… … … … …

Species are denoted by the first six letters of their names while sites are numbered from

1 to 374. Data in first-order logic is often organized in tables with one table per predicate

and where entries represent true values while absent combinations are assumed to be

false. For example, given this sample, HighTemp(Site006) is true while HighTemp(Site001)

would be false. The full data formatted for Alchemy-2 (Richardson and Domingos, 2006)

is provided as Supplementary Material.

species, their presence/absence in 374 locations, interactions,
and some environmental information on the locations. To
fully illustrate the strengths and limits of Markov logic in
this setting, we will not limit ourselves to the data available
for this particular dataset (e.g., we do not have body mass
for all species).

Data in first-order logic can be organized as a set of tables
(one for each predicate). For our example, we have a table
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named PreyOnAt with three columns (its arguments) and a
table named IsParasitoid with only one column. This format
implies the closed-world assumption: if an entry is not found,
it is false (see Table 3 for an example). For this problem we
defined several functions and predicates to describe everything
from predator-prey relationships, whether pairs of species often
co-occurred, along with information on locations such as
humidity, precipitation, and temperature (see Table 4). We ran
the basic learning algorithm from Alchemy-2 (Richardson and
Domingos, 2006), which is used both to learn new formulas
and weight them. The weights are listed at the end of each
formula. We use the “?” character at the end of the formula
involving data that were unavailable for this dataset (and thus,
we could not learn the weight). Here’s a sample of a knowledge
base where the first three formulas were learned directly from
our dataset and the last two serve as example for Hybrid
Markov logic:

∀s0, s1 : IsGaller(s0) ∧ PreyOn(s0, s1) ⇒ IsSalix(s1), 4.15. (11a)

∀s0, s1 : IsParasitoid(s0) ∧ PreyOn(s0, s1) ⇒ IsGaller(s1), 3.49. (11b)

∀s0, s1 : PreyOn(s0, s1) ⇒ HighCooccurrence(s0, s1), 1.57. (11c)

∀s0, s1, ∃α : PPreyOn(s0, s1) ≈ α exp
(

−2(N(s1)− C(s0))
2/R(s0)

)

? (11d)

∀s0, s1 :CloselyRelated(s0, s1) ∧ T(Occ(s0)) > T(Occ(s1)) ⇒ Mass(s0) > Mass(s1)? (11e)

The first two formulas correctly define the tritrophic relationship
between parasites, galler and salix, while the third shows a
solid, but not as strong, relationship between predation and co-
occurence. Formula (9c) would require hybrid Markov logic and
a fuzzy predicate≈.

Integration of macroecology and food web ecology may rely
on a better understanding of macroecological rules (Baiser et al.).
These rules are easy to express with first-order logic, for example
Equation (11e) is a formulation of Bergmann’s rule. We also
used the learning algorithm to test whether closely related species
had similar prey, but the weight attributed to the formula was
almost zero, telling us the formula was right as often as it
was wrong:

∀s0, s1 :CloselyRelated(s0, s1) ∧ PreyOn(s0, s2) ⇒ PreyOn(s1, s2), 0.00.

(12)
This example shows both the promise and the current issues with
hybrid logic-probabilistic techniques. Many of the predicates
would benefit from being fuzzy, for example, PreyOn should take
different values depending on how often predation occurs. We
also had to use arbitrary cut-offs for predicates likeCloselyRelated
and HighTemperature. Fortunately, many recent approaches
integrate logic with both fuzziness and probability theory (Adams
and Jacobs, 2015; Hu et al., 2016; Bach et al., 2017). Weights
are useful to understand which relationship is strong in the
data, and this example shows the beginning of a knowledge
base for food web ecology. The next step would be to discover
new formulas, whether manually or using machine learning
algorithms, and add data to revise the weights. If a formula
involves a predicate operating on food webs and we want to
apply our knowledge base to a dataset without food webs, this
formula will simply be ignored (because it won’t have grounded

predicates to evaluate it; see section 2). This is a strong advantage
of this knowledge representation: our little knowledge base here
can be used as a basis for any other ecological datasets even if they
quite different. With time, it’s possible to grow an increasingly
connected knowledge base, linking various ideas from different
fields together.

6. BAYESIAN HIGHER-ORDER
PROBABILISTIC PROGRAMMING

Artificial Intelligence has a long history with first-order logic
(Russell and Norvig, 2009) but type theory (or higher-order
logic), a more expressive logic, is currently more popular both
as a tool to formalize mathematics and as foundation for
programming languages. We explored hybrid approaches based
on first-order logic and, for this section, we’ll briefly discuss
Bayesian Higher-Order Probabilistic Programming (BHOPP)

along with its relationship with type theory. Probabilistic
programming languages are programming languages built
to describe probabilistic models and simplify the inference
process. Stan Carpenter et al. (2017) and BUGS Lunn et al.

(2012) are two popular examples of probabilistic programming

languages used for Bayesian inference, but even more flexible
languages for Bayesian probabilistic programming have recently
emerged. These languages, like Church Goodman et al.
(2008) and Anglican Wood et al. (2014), accept higher-order
constructs (that is: functions accepting other functions as
arguments). The ambition is that “ultimately we would like
simply to be able to do probabilistic programming using any
existing programming language as the modeling language”
(van de Meent et al., 2018).

First-order logic allowed us to model intricate theories
but, in practice, almost all modern systems used to formalize
mathematics are based on type theory (higher-order logic)
(Nederpelt and Geuvers, 2014). The “first” in first-order
logic refers to the limitation that quantification can only
be done on individual elements of a set, but not on
higher-order structures like sets, predicates, or functions. As
a consequence, several important concepts in mathematics
cannot be formalized directly with first-order logic. Since type
theory supports higher-order quantification, it is used as a
foundation to reason about mathematics. Coq, HOL, HOL
Light, and Microsoft’s LEAN are all popular languages for
automated theorem proving based on different forms of type
theory (The Coq Development Team, 2004; Harrison, 2009b;
de Moura et al., 2015). Programming languages in general,
not just those targeted at mathematicians, tend to also rely on
type theory as foundation (Pierce, 2002). See Farmer (2008)
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TABLE 4 | Predicates and functions used for the Salix example.

Functions Meaning

PPreyOn : species× species 7→ [0, 1] Probability that a species preys on another

PreyOn : species× species 7→ bool Predator-prey relationship

PreyOnAt : species× species× location 7→ bool Predator-prey relationship at a given location

PresenceAt : species× location 7→ bool Presence of a species at a location

IsParasite : species 7→ bool Whether the species is a parasite

IsGaller : species 7→ bool Whether the species is a galler

IsSalix : species 7→ bool Whether the species is a salix

CloselyRelated : species× species 7→ bool Whether two species are closely related

Occ : species 7→ {location} Set of locations where a species is found

Cooccurrence : species× species 7→ R
+ Proportion of locations where the species co-occur

HighCooccurrence : species× species 7→ bool Pair of species with high co-occurence

HighTemperature : location 7→ bool Location with above-average temperature

T :{location} 7→ R Mean temperature for a set of locations

Mass : species 7→ R
+ Mean adult body mass for a species

FoodWeb : location 7→ Graph Food web at a given location

Connectance :Graph 7→ R
+ Edges/Vertices2

SpeciesRichness :Graph 7→ N Number of species in the food web

N : species 7→ R
+ Niche of species per Williams et al. (2010)

C : species 7→ R
+ Diet of the species per Williams et al. (2010)

R : species 7→ R
+ Range of species’ diet per Williams et al. (2010)

A predicate is simply a function mapping to a boolean value (false or true, denoted bool). N stands for natural numbers (0, 1, 2,...) while R stands for real numbers, and [0, 1] is a

shorthand for a real number in the [0, 1] range. We must often force continuous values into boolean values. For example, HighTemperature and CloselyRelated both require arbitrary

cutoffs, often the line between true and false is set at the mean. Recent languages push for greater integration with fuzziness, which would allow predicates to take any values in the

[0, 1] range.

and Nederpelt and Geuvers (2014) for an introduction to
type theory. Here is where it gets confusing: the higher in
higher-order logic has a different meaning than in higher-
order probabilistic programming and yet, Bayesian higher-order
probabilistic programming languages (BHOPPL) may hold the
key to sound inference mixed with type theory. In BHOPPL,
higher-order means functions can take functions as arguments,
a common capability of modern programming languages. This
is necessary for higher-order logic but not sufficient. Where it
gets exciting is that a lot of progress is being made in framing
BHOPPL in the language of type theory (Borgström et al.,
2016). In effect, it would bring Bayesian and higher-order logic
reasoning together.

Furthermore, software-wise, BHOPPLs are well ahead of the
approaches described in previous sections such as hybridMarkov
logic networks. Current higher-order probabilistic programming
languages operate on variants of well-known languages: Anglican
is based on Clojure (Wood et al., 2014), Pyro is based on
Python (Bingham et al., 2019), Turing.jl uses Julia (Ge et al.,
2018). Many BHOPPLs have been designed to exploit the high-
performance architecture developed for deep learning such as
distributed systems of GPUs (graphics cards). GPUs have been
important in the development of fast learning and inference in
deep learning (Goodfellow et al., 2016). Pyro (Bingham et al.,
2019) is a BHOPPL built on top of PyTorch, one of the most
popular frameworks for deep learning, allowing computation to
be distributed on systems of GPUs. In contrast, there are no
open-source implementations of Markov logic networks running

on GPUs. The main downside of BHOPPLs is that, while in
theory they may support the richer logics used to formalize
modern mathematics, in practice higher-order probability theory
is itself not well understood. This is an active research topic
(van de Meent et al., 2018) but formalization faces serious
issues. For one, there are incompatibilities with the standard
measure-theoretic foundation of probability theory, which
may require rethinking how probability theory is formulated
(Borgströ et al., 2011; Staton et al., 2016; Heunen et al.,
2017; Staton, 2017; Ścibior et al., 2018). First-order logic is
among the most studied formal languages, making it easy
to use a first-order knowledge base with various software.
The current informal nature of BHOPPLs make them hard
to recommend for the synthesis of knowledge in ecology
and evolution, even though they may very well hold the
most potential.

7. WHERE’S OUR UNREASONABLY
EFFECTIVE PARADIGM?

Legitimate abstractions can often obfuscate how much various
subfields are related. Natural selection is a good example. Many
formulas in population genetics rely on fitness. Nobody disputes
the usefulness of this abstraction, it allows us to think about
changes in populations without worrying whether selection is
caused by predation or climate change. On the other hand,
fitness has also allowed the development of theoretical population
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genetics to evolve almost independently of ecology. There is
a realization that much of the complexity of evolution is
related to how selection varies in time and space, which puts
evolution in ecology’s backyard (Bell, 2010). Achieving Lewis’
goal of formalization would not prevent the use of fitness,
but having formulas with fitness cohabiting with formulas
explaining the components of fitness would implicitly link
ecology and evolution. This goes in both directions: what are
the consequences of new discoveries on speciation and adaptive
radiations on the formation of metacommunities? How can
community dynamics explain the extinction and persistence
of new species? If there isn’t a single theory of biodiversity,
the imperative is to understand biodiversity as a system of
theories. Given the scope of ecology and evolution and the
vast number of theories involved, it seems difficult to achieve
a holistic understanding without some sort of formal system to
see how the pieces of the puzzle fit together. Connolly et al.
noted how theories for metacommunities were divided between
those derived from first principles and those based on statistical
methods (Connolly et al., 2017). In systems unifying rich logics
with a probabilistic representation, this distinction does not exist,
theories are fully realized as symbolic and statistical entities.
Efforts to bring theories in ecology and evolution into a formal
setting should be primarily seen as an attempt to put them in
context, to force us to be explicit about our assumptions and see
how our ideas interact (Suppes, 1968).

Despite recent progress at the frontier of logic and probability,
there are still practical and theoretical issues to overcome tomake
a large database of knowledge for ecology and evolution possible.
Inference can be difficult in rich knowledge representations,
not all methods have robust open-source implementations, and
some approaches such as Bayesian higher-order probabilistic
programming are themselves not well understood. Plus, while
mathematicians benefit from decades of experience making large
databases of theorems, there have been no such efforts for
ecology and evolution. Lewis’ case for the formalization is worth
repeating: “when theories are partially formalized [...] the intra-
and interworkings of theories become more clearly visible, and

the total structure of the discipline becomes more evident”
(Lewis, 1980). This vision might soon become reality thanks to
increased access to data in evolution and evolution and recent
advances at the frontier of logic and probability. Given the
pressing need to understand a declining biodiversity, ecologists
and evolutionary biologists should be at the forefront of the
efforts to organize theories in unified knowledge bases.
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